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Abstract

Hospitals and other health care facilities produce health care waste (HCW),
which poses risks to health care personnel, patients, the public, and the envi-
ronment. Its complex makeup, including infectious pathogens and dangerous
compounds, necessitates expert treatment to reduce health and environmental
concerns. In numerous developing nations, healthcare waste disposal man-
agement has emerged as one of the most rapidly escalating concerns for urban
towns and health care providers. Therefore, identifying the most sustainable
HCW management technique (HCWMT) is a challenging endeavor due to
the multitude of possibilities, criteria, and stringent governmental regulations

Journal of Graphic Era University, Vol. 14_1, 205–250.
doi: 10.13052/jgeu0975-1416.1417
© 2026 River Publishers



206 Pooja Yadav et al.

governing HCW disposal. Therefore, this paper presents a multiattribute deci-
sion making (MADM) algorithm under the Fermatean fuzzy numbers (FFNs)
environment to select the optimal HCWMT. To achieve this, we propose
the Fermatean fuzzy Schweizer-Sklar power average (FFSSPA) aggregation
operator (AO) and the Fermatean fuzzy Schweizer-Sklar power weighted
average (FFSSPWA) AO for aggregating the FFNs by combining the fea-
tures of power averaging AO and Schweizer-Sklar t-norm and t-conorm.
The proposed FFSSPA AO and FFSSPA AO adjusts the influence of each
input dynamically, taking into account its relative importance or reliability.
However, based on the proposed FFSSPWA AO, we propose a MADM algo-
rithm under the FFNs environment. Afterwards, we consider a mathematical
case study for the assessment of sustainable HCWMTs and demonstrate the
practical applicability of the proposed MADM algorithm. In this case study,
five potential alternatives for sustainable health care waste management
techniques (HCWMTs): “Mechanical Biological Treatment”, “Hydrothermal
Carbonization”, “Incineration”, “Microwaving”, and “Chemical Disinfec-
tion”, which are evaluated based on seven attributes: “Environmental haz-
ard”, “Health risk”, “Investment cost”, “Operation and maintenance cost”,
“Revenue generation”, “Public acceptance”, and “Requirement of skilled
labor”. The proposed algorithm identifies “Chemical Disinfection” as the
most appropriate sustainable HCWMT for this case. Finally, we present
two numerical examples to demonstrate the superiority and validity of the
proposed MADM algorithm compared to existing MADM algorithms.

Keywords: Health care waste, Waste management, Fermatean fuzzy sets,
Schweizer-Sklar norm, MADM.

1 Introduction

Every developing economy has faced significant challenges with regard to
the management and treatment of waste from hospitals and other health care
facilities. The environment and public health may be at risk from improper
health care waste (HCW) management. According to Ho [16], if clinical
waste is not properly handled, it might spread a number of fatal illnesses, such
as HIV and hepatitis B and C. Approximately 85% of the waste produced by
healthcare operations is regular, non-hazardous waste, just like domestic rub-
bish. The remaining 15% is categorized as hazardous substance, which could
be carcinogenic, corrosive, reactive, infectious, radioactive, or flammable [8].
Despite the fact that some 16 billion vaccinations are administered globally
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each year, not all syringes and needles are properly disposed of after use.
Thus, it can be said that improper medical waste management seriously
jeopardizes public health. Because of the exponential development of HCW
brought on by growing disease, managing it effectively has become extremely
difficult, requiring creative solutions and sustainable methods to lessen the
effects on the environment and human health. The most popular techniques
for HCW management, such burning and dumping plastic waste, have detri-
mental consequences on groundwater, air quality, soil integrity and human
health etc [9]. It is also critical to emphasize the necessity of sustainable
activities like recycling and minimizing single-use items. Nonetheless, it is
critical to recognize that recycling is not a complete solution to the problem.
Investing in current treatment methods such as “ Mechanical Biological
Treatment”, “Hydrothermal Carbonization”, “Incineration”, “Microwaving”,
and “Chemical Disinfection” is critical for effectively managing HCW and
mitigating associated environmental and health risks. Healthcare specialists
and municipalities face a strategic challenge in determining the best sus-
tainable technique for HCW management. To choose the best sustainable
HCW management technique (HCWMT) on the basis of the multiple criteria
forming a typical multiattribute decision making (MADM) problem.

IN MADM process, to assess the HCWMTs, the main problem is to
gathering correct data for HCWMTs under the different attributes due to
restrictions, lack of knowledge, human error, and inconsistency in the sit-
uation. To address these challenges, fuzzy set (FS) theory [35] and its
extensions, such as intuitionistic fuzzy set (IFS) [4], Pythagorean fuzzy set
(PFS) [34] and Fermatean fuzzy sets (FFS) [30] have been widely used by
the researchers. The FFS is the generalization of the IFS and PFS. The FFS
provides a larger space compare to IFS and PFS to express the uncertainty
due to its more flexible constraint (0 ≤ α3 + β3 ≤ 1) of the membership
degree α and non-membership degree β. Various decision making methods
have been developed under these environment and we have explained them
in the following.

Decision Making Methods Under the Fuzzy Sets and Fermatean
Fuzzy Sets

Kumar and Garg [20] defined the TOPSIS method based on the set pair
analysis theory under the intuitionistic fuzzy numbers (IFNs) environment.
Hussain et al. [17] proposed the MADM method based on the proposed
Aczel Alsina Heronian mean aggregation operator (AO) under the IFNs
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environment assessment of Solar Panel. Kumar and Chen [19] defined the
improved aggregation operator based on Einstein norm and MADM method
based on the proposed AO under the IFNs environment. Bhardwaj et al. [6]
defined the MADM method based on the entropy measure in the context
of IFNs. Amman et al. [3] proposed the MADM method based on the
Spearman rank correlation coefficient under the FFNs environment. Akram
et al. [1] presented the decision-making method for an effective sanitizer
to reduce COVID-19 under FF environment. A MADM approach based on
the Hamacher interactive geometric AO for FFS was developed by Shahzadi
et al. [31]. Keshavarz-Ghorabaee et al. [18] developed the decision-making
method based on WASPAS technique under the FFNs environment for the
selection of green construction supplier selection. Aydemir and Yilmaz Gun-
duz [5] introduced the TOPSIS method with Dombi AOs for FFS and MADM
problems based on them. Senapati and Yager [29] proposed the Fermatean
fuzzy weighted average (FFWA) AO and Fermatean fuzzy power weighted
average (FFPWA) AO and also developed the MADM algorithm under the
FFNs environment. Garg et al. [14] proposed the Fermatean fuzzy Yager
weighted average (FFYWA) AO and MADM method for the selection of
authentic lab for the COVID-19 test. Chen et al. [10] developed the IWP-
TOPSIS-GRA techniques for FFS and its application in healthcare waste
treatment technology evalution. Alghazzawi et al. [2] defined the Fermatean
fuzzy ordered weighted averaging (FFOWA) AO and MADM algorithm
based on the proposed AO in the context of FFNs.

Decision Making Methods for Health Care Waste Management

Chauhan and Singh [8] provided a brief overviews related to the HCW
management. Manupati et al. [22] defined the multicriteria decision mak-
ing (MCDM) method for the evaluation of the HCWMTs. Chauhan and
Singh [9] proposed the MADM method based on the analytic hierarchy
process (AHP) and TOPSIS techniques under the fuzzy environment for the
selection of the sustainable location for the HCW disposal. Mishra et al. [24]
defined the EDAS approach based on the parametric divergence measure
under the IFSs environment for the assessment of HCW disposal technology.
Mishra and Rani [23] defined the MADM method based on the WASPAS
technique under the FFNs context for the selection of sustainable location
for the HCW disposal. Rao and Sujatha [26] proposed the WASPAS tech-
nique for the selection of best HCWMT. Debbarma et al. [11] proposed the
SWARA–MABAC based decision making algorithm for the health care waste
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recycling. Pamučar et al. [25] proposed the decision making method under
the fuzzy rough environment for the assessment of HCWMTs. Chakraborty
and Saha [7] proposed the Bonferroni mean AO and decision making algo-
rithm for the selection of HCWMTs under the FFNs environment. Gao
et al. [12] defined the BMW-VIKOR based MADM method under the FFNs
environment for the selection of best HCWMT.

1.1 Motivations of the Paper

This paper addresses the challenges associated with MADM problems and
selecting the most efficient and sustainable methods in healthcare waste
management under the FFNs environment. The primary motivations are:

(a) The optimal selection for sustainable HCWMT is categorized as a
MADM problem, characterized by conflicting criteria.

(b) The existing FFWA AO [29], FFPWA AO [29], FFOWA AO [2] and
FFYWA AO [14] are not flexible with the parameters and not also
remove the influence of each input based on its relative importance or
reliability.

(c) We find that MADM algorithm based on FFWA AO [29], MADM
algorithm based on FFPWA AO [29], MADM algorithm based on
FFOWA AO [2] and MADM algorithm based on FFYWA AO [14]
cannot distinguish the ranking order (RO) of the alternatives in some
cases.

(d) Therefore, to overcome the limitations of the existing MADM algo-
rithms given in [2, 14, 29], we need to develop a new MADM algorithm
under the FFNs environment.

1.2 Contributions and Novelty of the Paper

In this study, we propose the Fermatean fuzzy Schweizer-Sklar power
average (FFSSPA) AO and the Fermatean fuzzy Schweizer-Sklar power
weighted average (FFSSPWA) AO for aggregating the FFNs by using power
averaging AO and Schweizer-Sklar t-norm and t-conorm. The parameter-
adjustable Schweizer-Sklar norms can switch between disjunctive (OR-like)
and conjunctive (AND-like) aggregation behaviors. The ability to adapt
allows decision-makers to accurately represent a wide range of real-life
situations. Depending on how important or reliable each input is, the power
averaging AO dynamically adjusts its influence. Compared to fixed-weight
aggregating operators, this method more accurately represents the real impact
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of each criterion. We also present proofs of their desirable characteris-
tics to show the validity of the proposed AOs. Afterwards, we develop a
MADM algorithm under the FFNs environment by using FFSSPWA AO.
Furthermore, to illustrate the applicability of the proposed MADM algorithm,
we consider a mathematical case study of the selection of optimal HCW
management techniques (HCWMTs) for sustainable management and dis-
posal of HCW. In this case study, the proposed MADM algorithm selects
the optimal HCWMT among the five HCWMTs “ Mechanical Biological
Treatment” (A1), “Hydrothermal Carbonization” (A2), “Incineration” (A3),
“Microwaving” (A4), and “Chemical Disinfection” (A5) under the seven
attributes “Environmental hazard” (G1), “Health risk” (G2), “Investment
cost” (G3), “Operation and maintenance cost” (G4), “Revenue generation”
(G5), “Public acceptance” (G6) and “Requirement of skilled labor” (G7).
We also provide a comparison of the obtained ranking orders (ROs) using the
proposed MADM algorithm with ROs obtained by the MADM algorithm
based on FFWA AO [29], MADM algorithm based on FFPWA AO [29],
MADM algorithm based on FFOWA AO [2] and MADM algorithm based on
FFYWA AO [14]. Finally, we consider two numerical examples to demon-
strate the superiority and robustness of the proposed MADM algorithm
compared to MADM algorithm based on FFWA AO [29], MADM algorithm
based on FFPWA AO [29], MADM algorithm based on FFOWA AO [2]
and MADM algorithm based on FFYWA AO [14]. The proposed MADM
algorithm can address the shortcomings of the MADM algorithm based on
FFWA AO [29], MADM algorithm based on FFPWA AO [29], MADM
algorithm based on FFOWA AO [2] and MADM algorithm based on FFYWA
AO [14], where they cannot distinguish the ROs of the alternatives in some
scenarios.

1.3 Arrangement of the Paper

The rest of the paper is organized as follows: Section 2 presents the foun-
dational concepts relevant to this study. Section 3 introduces the power
aggregation operators using Schweizer-Sklar t-norm, t-conorm and power
averaging AO, and proves their desirable properties. In Section 4, we pro-
pose a MADM algorithm based on the proposed FFSSPWA AO. Section 5
provides a case study of selecting sustainable HCWMTs. Section 6 provides
the superiority of the proposed MADM algorithm over the existing MADM
algorithms. Finally, Section 7 provides a comprehensive summary of the
paper. Figure 1 shows a graphical abstract of this study.
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Figure 1 Graphical structure of the article outline.

2 Preliminaries

Definition 2.1. [30] A Fermatean fuzzy set F̃ in finite universe of discourse
X is defined as follows:

F̃ = {⟨z, αF̃ (z), βF̃ (z) | z ∈ X⟩}, (1)

where αF̃ (z) : X → [0, 1] represents the membership degree of z ∈ X and
βF̃ (z) : X → [0, 1] represents the non-membership degree of z ∈ X such
that 0 ≤ α3

F̃
(z) + β3

F̃
(z) ≤ 1 for all z ∈ X . The hesitancy degree of z in X

is given by πF̃ = 3

√
1− α3

F̃
(z)− β3

F̃
(z). Usually, the pair (αF̃ (z), βF̃ (z)) is

called FFN.

Definition 2.2. [30] The score function s of a FFN z = (α, β) is defined as
follows:

s(z) = α3 − β3, (2)

where s(z) ∈ [−1, 1].

Definition 2.3. [30] The accuracy function Ψ of a FFN z = (α, β) is defined
as follows:

Ψ(z) = α3 + β3, (3)

where Ψ(z) ∈ [0, 1].
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Definition 2.4. [30] If z1 = (α1, β1) and z2 = (α2, β2) be any two FFNs,
then

(1) If s(z1) > s(z2) then z1 ≻ z2;
(2) If s(z1) < s(z2) then z1 ≺ z2;
(3) If s(z1) = s(z2) then

(i) If Ψ(z1) > Ψ(z2) then z1 ≻ z2;
(ii) If Ψ(z1) < Ψ(z2) then z1 ≺ z2;

(iii) If Ψ(z1) = Ψ(z2), then z1 = z2.

Definition 2.5. [33] The power average (PA) AO for real numbers ξ1, ξ2, . . .,
ξn is defined as follows:

PA(ξ1, ξ2, . . . , ξn) =
n∑

i=1

1 + T (ξi)∑n
i=1(1 + T (ξi))

ξi, (4)

where T (ξi) =
n∑

i,j=1
i ̸=j

Sup(ξi, ξj), and Sup(ξi, ξj) denotes the support degree

for ξi from ξj , which satisfies the following properties:

(i) Sup(ξi, ξj) ∈ [0, 1];
(ii) Sup(ξi, ξj) = Sup(ξj , ξi);

(iii) Sup(ξi, ξj) ≥ Sup(ξu, ξv) if d(ξi − ξj) ≤ d(ξu − ξv).

Definition 2.6. [28] Let x and y be two real numbers and η < 0. The
Schweizer-Sklar’s t-norm T and t-conorm U are defined as follows:

T (x, y) = (xη + yη − 1)
1
η ,

U(x, y) = 1− ((1− x)η + (1− y)η − 1)
1
η .

Definition 2.7. [32] Let z1 = (α1, β1), z2 = (α2, β2) be any two FFNs. The
operation laws of FFNs based on Schweizer-Sklar t-norm and t-conorm are
defined as follows:

(i) z1
⊕

z2 = (
3

√
1− ((1− α3

1)
η + (1− α3

2)
η − 1)

1
η ,

3

√
(β3η

1 + β3η
2 − 1)

1
η );

(ii) z1
⊗

z2 = (
3

√
(α3η

1 + α3η
2 − 1)

1
η ,

3

√
1− ((1− β3

1)
η + (1− β3

2)
η − 1)

1
η );
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(iii) λz1 = (
3

√
1− (λ(1− α3

1)
η − (λ− 1))

1
η ,

3

√
(λβ3η

1 − (λ− 1))
1
η );

(iv) zλ1 = (
3

√
(λα3η

1 − (λ− 1))
1
η ,

3

√
1− (λ(1− β3

1)
η − (λ− 1))

1
η , );

where λ > 0 and η < 0.

3 Proposed Schweizer-Sklar Power Aggregation Operators
for FFNs

In this segment, we propose Fermatean fuzzy Schweizer-Sklar power aver-
aging (FFSSPA) AO and Fermatean fuzzy Schweizer-Sklar power weighted
averaging (FFSSPWA) AO based on the Schweizer-Sklar operations pre-
sented in Definition 2.7 and the PA AO shown in Definition 2.5.

Definition 3.1. Let z1, z2, . . . , zn be a collection of FFNs. The proposed
FFSSPA AO for aggregating the FFNs z1, z2, . . . , zn is defined as follows:

FFSSPA(z1, z2, . . . , zn) =
n⊕

t=1

(1 + T (zt))∑n
t=1(1 + T (zt))

zt, (5)

where T (zt) =
∑n

t=1
t̸=k

S(zt, zk), S(zt, zk) = 1−

(
1
2

{(√
α3
t −

√
α3
k

)2
+
(√

β3
t −

√
β3
k

)2
+
(√

π3
t −

√
π3
k

)2})1/2

represents the support for zt from zk, which satisfies the following proper-
ties:

(i) S(zt, zk) ∈ [0, 1],
(ii) S(zt, zk) = S(zk, zt),

(iii) S(zt, zk) ≥ S(zp, zq) if |zt − zk| < |zp − zq|.

Theorem 3.1. For the FFNs z1 = (α1, β1), z2 = (α2, β2), . . ., zn =
(αn, βn), their aggregated value by using the proposed FFSSPA AO is a FFN
and provided as follows:

FFSSPA(z1, z2, . . . , zn) =

(
3

√
1−

(∑n
t=1 δt

(
1− α3

t )
η −

∑n
t=1 δt + 1

) 1
η ,

3

√(∑n
t=1 δtβ

3η
t −

∑n
t=1 δt + 1

) 1
η

)
,

(6)

where η < 0, δt =
(1+T (zt))∑n
t=1(1+T (zt))

, T (zt) =
∑n

t=1
t̸=k

S(zt, zk).
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Proof 3.1. Let z1 = (α1, β1), z2 = (α2, β2), . . ., zn = (αn, βn) be FFNs,
η < 0 and δt = (1+T (zt))∑n

t=1(1+T (zt))
. To demonstrate this theorem, we use the

mathematical induction principle as follows:

(i) Take t = 2, then by using Definition 2.7, we get

δ1z1 =

 3

√√√√
1−

(
δ1
(
1− α3

1)
η − δ1 + 1

) 1
η

,
3

√√√√(
δ1β

3η
1 − δ1 + 1

) 1
η



δ2z2 =

 3

√√√√
1−

(
δ2
(
1− α3

2)
η − δ2 + 1

) 1
η

,
3

√√√√(
δ2β

3η
2 − δ2 + 1

) 1
η



FFSSPA(z1, z2)

= δ1z1
⊕

δ2z2

=

 3

√√√√
1−

(
δ1
(
1− α3

1)
η − δ1 + 1

) 1
η

,
3

√√√√(
δ1β

3η
1 − δ1 + 1

) 1
η


⊕ 3

√√√√
1−

(
δ2
(
1− α3

2)
η − δ2 + 1

) 1
η

,
3

√√√√(
δ2β

3η
2 − δ2 + 1

) 1
η



=


3

√√√√√√√√√√
1−

((
1− 1 +

(
δ1
(
1− α3

1)
η − δ1 + 1

) 1
η

)η

+

(
1− 1 +

(
δ2
(
1− α3

2)
η − δ2 + 1

) 1
η

)η

− 1

) 1
η

,

3

√√√√(((
δ1β

3η
1 − δ1 + 1

) 1
η

)η
+
((

δ2β
3η
2 − δ2 + 1

) 1
η

)η
− 1

) 1
η



=

 3

√√√√
1−

((
δ1
(
1− α3

1)
η − δ1 + 1

)
+
(
δ2
(
1− α3

2)
η − δ2 + 1

)
− 1

) 1
η

,
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3

√√√√((
δ1β

3η
1 − δ1 + 1

)
+
(
δ2β

3η
2 − δ2 + 1

)
− 1

) 1
η



=

 3

√√√√
1−

(
δ1
(
1− α3

1)
η + δ2

(
1− α3

2)
η − δ1 − δ2 + 1

) 1
η

,

3

√√√√(
δ1β

3η
1 + δ2β

3η
2 − δ1 − δ2 + 1

) 1
η



=

 3

√√√√
1−

(
2∑

t=1

δt
(
1− α3

t )
η −

2∑
t=1

δt + 1

) 1
η

,

3

√√√√( 2∑
t=1

δtβ
3η
t −

2∑
t=1

δt + 1

) 1
η

 .

Thus, the result in Equation (6) is true for t = 2.
(ii) Now, assume the result is true for t = m.

FFSSPA(z1, z2, . . . , zm)

= δ1z1
⊕

δ2z2
⊕

. . .
⊕

δmzm

=

 3

√√√√
1−

(
m∑
t=1

δt
(
1− α3

t )
η −

m∑
t=1

δt + 1

) 1
η

,

3

√√√√( m∑
t=1

δtβ
3η
t −

m∑
t=1

δt + 1

) 1
η

 .

(iii) Now, consider t = m+ 1, we get

FFSSPA(z1, z2, . . . , zm+1)

=
m⊕
t=1

δtzt
⊕

δm+1zm+1
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=

 3

√√√√
1−

(
m∑
t=1

δt
(
1− α3

t )
η −

m∑
t=1

δt + 1

) 1
η

,

3

√√√√( m∑
t=1

δtβ
3η
t −

m∑
t=1

δt + 1

) 1
η


⊕(

3

√
1−

(
δm+1(1− α3

m+1)
η − (δm+1 − 1)

) 1
η ,

3

√(
δm+1β

3η
m+1 − (δm+1 − 1)

) 1
η

)

=


3

√√√√√√√√√√√
1−

(1− 1 +

(
m∑
t=1

δt
(
1− α3

t )
η −

m∑
t=1

δt + 1

) 1
η

η

+
(
1− 1 +

(
δm+1

(
1− α3

m+1)
η − δm+1 + 1

) 1
η

)η
− 1

) 1
η

,

3

√√√√√√√√√√√√

(( m∑
t=1

δtβ
3η
t −

m∑
t=1

δt + 1

) 1
η

η

+

((
δm+1β

3η
m+1 − δm+1 + 1

) 1
η

)η

− 1

) 1
η



=

 3

√√√√√1−

(
m+1∑
t=1

δt(1− α3
t )

η −
m+1∑
t=1

δt + 1

) 1
η

,

3

√√√√√(m+1∑
t=1

δtβ
3η
t −

m+1∑
t=1

δt + 1

) 1
η

 .
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Thus, the result in Equation (6) holds for t = m+ 1.

Hence, the result in Equation (6) is true for all natural numbers.

Example 3.1. Let z1 = (0.5, 0.4), z2 = (0.6, 0.1) and z3 = (0.4, 0.4) be
any three FFNs. First, we calculate the supports values S(zt, zk) between the
FFNs zt and zk as follows:

S(z1, z2) = 1−



√√√√√√√√√√√
1

2



(√
(0.5)3 −

√
(0.6)3

)2
+
(√

(0.4)3 −
√

(0.1)3
)2

+
(√

(0.9326)3 −
√
(0.9217)3

)2




= 0.8245,

S(z1, z3) = 1−



√√√√√√√√√√√
1

2



(√
(0.5)3 −

√
(0.4)3

)2
+
(√

(0.4)3 −
√

(0.4)3
)2

+
(√

(0.9326)3 −
√
(0.9554)3

)2




= 0.9251,

S(z2, z3) = 1−



√√√√√√√√√√√
1

2



(√
(0.6)3 −

√
(0.4)3

)2
+
(√

(0.1)3 −
√

(0.4)3
)2

+
(√

(0.9217)3 −
√
(0.9554)3

)2




= 0.7806.

After that, we calculate T (z1), T (z2) and T (z3) of the FFNs z1, z2 and z3,
respectively, where T (zt) =

∑n
t=1
t̸=k

S(zt, zk),

T (z1) = S(z1, z2) + S(z1, z3) = 0.8245 + 0.9251 = 1.7496,

T (z2) = S(z2, z1) + S(z2, z3) = 0.8245 + 0.7806 = 1.6051,
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T (z3) = S(z3, z1) + S(z3, z2) = 0.9251 + 0.7806 = 1.7057.

Now, we calculate δ1, δ2 and δ3 for the FFNs z1, z2 and z3, respectively,
where δ1 =

(1+T (z1))∑3
t=1(1+T (zt))

= 0.3411, δ2 = 0.3232 and δ3 = 0.3357.

Now, by using Equation (6), we aggregate the FFNs z1, z2 and z3, for
η = −3,

FFSSPA(z1, z2, z3) =


3

√√√√√√√√√√√√

1−
(
0.3411

(
1− (0.5)3

)−3

+ 0.3232
(
1− (0.6)3

)−3

+ 0.3357
(
1− (0.4)3

)−3 − 1 + 1

) 1
−3

,

3

√√√√√√√√√
(
0.3411 (0.4)3(−3) + 0.3232 (0.1)3(−3)

+ 0.3357 (0.4)3(−3) − 1 + 1

) 1
−3

 ,

= (0.5230, 0.1134).

Property 3.1 (Idempotency). Let z1 = (α1, β1), z2 = (α2, β2), . . .,
zn = (αn, βn) be FFNs. If z1 = z2 = . . . = zn = z = (α, β), then
FFSSPA(z1, z2, . . . , zn) = z.

Proof 3.2.

FFSSPA(z1, z2, . . . , zn) =

 3

√√√√
1−

(
n∑

t=1

δt
(
1− α3

t )
η −

n∑
t=1

δt + 1

) 1
η

,

3

√√√√( n∑
t=1

δtβ
3η
t −

n∑
t=1

δt + 1

) 1
η



=

 3

√√√√
1−

(
n∑

t=1

δt
(
1− α3)η −

n∑
t=1

δt + 1

) 1
η

,
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3

√√√√( n∑
t=1

δtβ3η −
n∑

t=1

δt + 1

) 1
η


=

(
3

√
1− ((1− α3)η − 1 + 1)

1
η ,

3

√
(β3η − 1 + 1)

1
η

)
= (α, β) = z.

Property 3.2 (Monotonicity). Let zt = (αt, βt) and ẑt = (α̂t, β̂t), t =
1, 2, . . . , n, be two collections of FFNs. If zt ≤ ẑt, ∀t (t = 1, 2, . . . , n) then

FFSSPA(z1, z2, . . . , zn) ≤ FFSSPA(ẑ1, ẑ2, . . . , ẑn).

Proof 3.3. By using Equation (6), we get

FFSSPA(z1, z2, . . . , zn)

=

 3

√√√√
1−

(
n∑

t=1

δt
(
1− α3

t )
η −

n∑
t=1

δt + 1

) 1
η

,

3

√√√√( n∑
t=1

δtβ
3η
t −

n∑
t=1

δt + 1

) 1
η

 ,

FFSSPA(ẑ1, ẑ2, . . . , ẑn)

=

 3

√√√√
1−

(
n∑

t=1

δ̂t
(
1− α̂t

3)η −
n∑

t=1

δ̂t + 1

) 1
η

,

3

√√√√( n∑
t=1

δ̂tβ̂t
3η −

n∑
t=1

δ̂t + 1

) 1
η

 .

Since zt ≤ ẑt, ∀t (t = 1, 2, . . . , n) therefore we have αt ≤ α̂t and βt ≥
β̂t ∀ t ∈ 1, 2, . . . , n, which implies that α3

t ≤ α̂3
t ⇒ (1−α3

t ) ≥ (1−α̂3
t ).
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Because η < 0 therefore (1− α3
t )

η ≤ (1− α̂3
t )

η. Now, we have

⇒

(
n∑

t=1

δt
(
1− α3

t )
η −

n∑
t=1

δt + 1

) 1
η

≥

(
n∑

t=1

δ̂t
(
1− α̂t

3)η −
n∑

t=1

δ̂t + 1

) 1
η

⇒ 1−

(
n∑

t=1

δt
(
1− α3

t )
η −

n∑
t=1

δt + 1

) 1
η

≤ 1−

(
n∑

t=1

δ̂t
(
1− α̂t

3)η −
n∑

t=1

δ̂t + 1

) 1
η

⇒ 3

√√√√
1−

(
n∑

t=1

δt
(
1− α3

t )
η −

n∑
t=1

δt + 1

) 1
η

≤ 3

√√√√
1−

(
n∑

t=1

δ̂t
(
1− α̂t

3)η −
n∑

t=1

δ̂t + 1

) 1
η

.

Similarly, if β̂t ≤ βt, we obtain(
n∑

t=1

δ̂tβ̂t
3η −

n∑
t=1

δ̂t + 1

) 1
η

≤

(
n∑

t=1

δtβ
3η
t −

n∑
t=1

δt + 1

) 1
η

⇒ 3

√√√√( n∑
t=1

δ̂tβ̂t
3η −

n∑
t=1

δ̂t + 1

) 1
η

≤ 3

√√√√( n∑
t=1

δtβ
3η
t −

n∑
t=1

δt + 1

) 1
η

.

Thus, we get FFSSPA(z1, z2, . . . , zn) ≤ FFSSPA(ẑ1, ẑ2, . . . , ẑn).

Property 3.3 (Boundedness). Let z1 = (α1, β1), z2 = (α2, β2), . . . , zn =
(αn, βn) be FFNs, z+ = (maxnt=1 αt,minnt=1 βt), z

− = (minnt=1 αt,maxnt=1

βt). Then

z− ≤ FFSSPA(z1, z2, . . . , zn) ≤ z+.
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Proof 3.4. Since minnt=1 αt ≤ αt ≤ maxnt=1 αt minnt=1 βt ≤ βt ≤
maxnt=1 βt, ∀t ∈ 1, 2, . . . , n, then z− ≤ zt for t = 1, 2, . . . , n. Thus, by
using monotonicity property, we have

FFSSPA(z−, z−, . . . , z−) ≤ FFSSPA(z1, z2, . . . , zn).

Now, by using idempotency property, we have

z− ≤ FFSSPA(z1, z2, . . . , zn). (7)

Similarly,

FFSSPA(z1, z2, . . . , zn) ≤ z+. (8)

Combining Equations (7) and (8), we get

z− ≤ FFSSPA(z1, z2, . . . , zn) ≤ z+.

3.1 The FFSSPWA Aggregation Operator

Definition 3.2. Let z1, z2, . . . , zn be a collection of FFNs and w1, w2, . . . , wn

be the weights of z1, z2, . . . , zn, respectively, such that wt ≥ 0 and∑n
t=1wt = 1. The proposed FFSSPWA AO for aggregating z1, z2, . . . , zn

is defined as follows:

FFSSPWA(z1, z2, . . . , zn) =

n⊕
t=1

wt(1 + T (zt))∑n
t=1wt(1 + T (zt))

zt, (9)

where T (zt) =
∑n

t=1
t̸=k

S(zt, zk), S(zt, zk) = 1−

(
1
2

{(√
α3
t −

√
α3
k

)2
+
(√

β3
t −

√
β3
k

)2
+
(√

π3
t −

√
π3
k

)2})1/2

denotes the support between the FFNs zt from zk, which satisfying the
following properties:

(i) S(zt, zk) ∈ [0, 1],
(ii) S(zt, zk) = S(zk, zt),

(iii) S(zt, zk) ≥ S(zp, zq) if |zt − zk| < |zp − zq|.

Theorem 3.2. For the FFNs z1 = (α1, β1), z2 = (α2, β2), . . ., zn =
(αn, βn), their aggregated value by using the proposed FFSSPWA AO is a
FFN and provided as follows:

FFSSPWA(z1, z2, . . . , zn)
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=

 3

√√√√
1−

(
n∑

t=1

ρt
(
1− α3

t )
η −

n∑
t=1

ρt + 1

) 1
η

,

3

√√√√( n∑
t=1

ρtβ
3η
t −

n∑
t=1

ρt + 1

) 1
η

 , (10)

where η < 0, ρt =
wt(1+T (zt))∑n
t=1 wt(1+T (zt))

, wt is the weight of zt such that wt ≥ 0,

t = 1, 2, . . . , n,
∑n

t=1wt = 1 and T (zt) =
∑n

t=1
t̸=k

S(zt, zk).

Proof 3.5. The proof of this theorem is similar to the proof of Theorem 3.1.

Example 3.2. Let z1 = (0.6, 0.8), z2 = (0.9, 0.2) and z3 = (0.4, 0.5) be any
three FFNs with weights w1 = 0.3, w2 = 0.4 and w3 = 0.3, respectively.
First, we calculate the support values S(zt, zk) between the FFNs zt and zk
as follows:

S(z1, z2) = 1−



√√√√√√√√√√√
1

2



(√
(0.6)3 −

√
(0.9)3

)2
+
(√

(0.8)3 −
√

(0.2)3
)2

+
(√

(0.6479)3 −
√
(0.6407)3

)2




= 0.4787,

S(z1, z3) = 1−



√√√√√√√√√√√
1

2



(√
(0.6)3 −

√
(0.4)3

)2
+
(√

(0.8)3 −
√

(0.5)3
)2

+
(√

(0.6479)3 −
√
(0.9326)3

)2




= 0.6003,
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S(z2, z3) = 1−



√√√√√√√√√√√
1

2



(√
(0.9)3 −

√
(0.4)3

)2
+
(√

(0.2)3 −
√

(0.5)3
)2

+
(√

(0.6407)3 −
√
(0.9326)3

)2




= 0.4610.

After that, we calculate T (z1), T (z2) and T (z3) of the FFNs z1, z2 and z3,
respectively, where T (zt) =

∑n
t=1
t̸=k

S(zt, zk),

T (z1) = S(z1, z2) + S(z1, z3)

= 0.4787 + 0.6003 = 1.0790,

T (z2) = S(z2, z1) + S(z2, z3)

= 0.4787 + 0.4610 = 0.9397,

T (z3) = S(z3, z1) + S(z3, z2)

= 0.6003 + 0.4610 = 1.0613.

Now, we calculate ρ1, ρ2 and ρ3 for the FFNs z1, z2 and z3, respectively,
where ρ1 =

w1(1+T (z1))∑3
t=1 wt(1+T (zt))

= 0.3091, ρ2 = 0.3845 and ρ3 = 0.3064.

Now, by using Equation (10), we aggregate the FFNs z1, z2 and z3, for
η = −3, as follows:

FFSSPWA(z1, z2, z3) =


3

√√√√√√√√√√√√

1−
(
0.3091 (1− (0.6)3)−3

+ 0.3845
(
1− (0.9)3

)−3

+ 0.3064
(
1− (0.4)3

)−3 − 1 + 1

) 1
−3

,
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3

√√√√√√√√√
(
0.3091 (0.8)3(−3) + 0.3845 (0.2)3(−3)

+ 0.3064 (0.5)3(−3) − 1 + 1

) 1
−3

 ,

= (0.8589, 0.2224).

Property 3.4 (Idempotency). Let z1 = (α1, β1), z2 = (α2, β2), . . .,
zn = (αn, βn) be FFNs with weights w1, w2, . . . , and wn, respectively,
where wt ≥ 0 and

∑n
t=1wt = 1. If z1 = z2 = . . . = zn = z = (α, β),

then FFSSPWA(z1, z2, . . . , zn) = z.

Proof 3.6.

FFSSPWA(z1, z2, . . . , zn) =

 3

√√√√
1−

(
n∑

t=1

ρt
(
1− α3

t )
η −

n∑
t=1

ρt + 1

) 1
η

,

3

√√√√( n∑
t=1

ρtβ
3η
t −

n∑
t=1

ρt + 1

) 1
η



=

 3

√√√√
1−

(
n∑

t=1

ρt
(
1− α3)η −

n∑
t=1

ρt + 1

) 1
η

,

3

√√√√( n∑
t=1

ρtβ3η −
n∑

t=1

ρt + 1

) 1
η


=

(
3

√
1−

((
1− α3)η − 1 + 1

) 1
η ,

3

√
(β3η − 1 + 1)

1
η

)
= (α, β) = z.

Property 3.5 (Monotonicity). Let zt = (αt, βt) and ẑt = (α̂t, β̂t), t =
1, 2, . . . , n, be two collections of FFNs with weight wt of FFN zt, where
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wt ≥ 0 and
∑n

t=1wt = 1. If zt ≤ ẑt, ∀t (t = 1, 2, . . . , n) then

FFSSPWA(z1, z2, . . . , zn) ≤ FFSSPWA(ẑ1, ẑ2, . . . , ẑn).

Proof 3.7.

FFSSPWA(z1, z2, . . . , zn) =

 3

√√√√
1−

(
n∑

t=1

ρt
(
1− α3

t )
η −

n∑
t=1

ρt + 1

) 1
η

,

3

√√√√( n∑
t=1

ρtβ
3η
t −

n∑
t=1

ρt + 1

) 1
η



FFSSPWA(ẑ1, ẑ2, . . . , ẑn) =

 3

√√√√
1−

(
n∑

t=1

ρ̂t
(
1− α̂t

3)η −
n∑

t=1

ρ̂t + 1

) 1
η

,

3

√√√√( n∑
t=1

ρ̂tβ̂t
3η −

n∑
t=1

ρ̂t + 1

) 1
η


Since αt ≤ α̂t, ∀t ∈ 1, 2, . . . , n, α3

t ≤ α̂3
t ⇒ (1 − α3

t ) ≥ (1 − α̂3
t ) ⇒

(1− α3
t )

η ≤ (1− α̂3
t )

η, (since η < 0)

⇒

(
n∑

t=1

ρt
(
1− α3

t )

)
≤

(
n∑

t=1

ρ̂t
(
1− α̂t

3)η

)

⇒

(
n∑

t=1

ρt
(
1− α3

t )
η −

n∑
t=1

ρt + 1

) 1
η

≥

(
n∑

t=1

ρ̂t
(
1− α̂t

3)η −
n∑

t=1

ρ̂t + 1

) 1
η

⇒ 1−

(
n∑

t=1

ρt
(
1− α3

t )
η −

n∑
t=1

ρt + 1

) 1
η
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≤ 1−

(
n∑

t=1

ρ̂t
(
1− α̂t

3)η −
n∑

t=1

ρ̂t + 1

) 1
η

⇒ 3

√√√√
1−

(
n∑

t=1

ρt
(
1− α3

t )
η −

n∑
t=1

ρt + 1

) 1
η

≤ 3

√√√√
1−

(
n∑

t=1

ρ̂t
(
1− α̂t

3)η −
n∑

t=1

ρ̂t + 1

) 1
η

similarly, if β̂t ≤ βt, we obtain(
n∑

t=1

ρ̂tβ̂t
3η

)
≥

(
n∑

t=1

ρtβ
3η
t

)
(since η < 0)

⇒

(
n∑

t=1

ρ̂tβ̂t
3η −

n∑
t=1

ρ̂t + 1

) 1
η

≤

(
n∑

t=1

ρtβ
3η
t −

n∑
t=1

ρt + 1

) 1
η

⇒ 3

√√√√( n∑
t=1

ρ̂tβ̂t
3η −

n∑
t=1

ρ̂t + 1

) 1
η

≤ 3

√√√√( n∑
t=1

ρtβ
3η
t −

n∑
t=1

ρt + 1

) 1
η

Because zt ≤ ẑt, ∀ t = 1, 2, . . . , n, we get

FFSSPWA(z1, z2, . . . , zn) ≤ FFSSPWA(ẑ1, ẑ2, . . . , ẑn).

Property 3.6 (Boundedness). Let z1 = (α1, β1), z2 = (α2, β2), . . .,
zn = (αn, βn) be FFNs with weights w1, w2, . . . , and wn, respectively,
where wt ≥ 0 and

∑n
t=1wt = 1, z+ = (maxnt=1 αt,minnt=1 βt), z

− =
(minnt=1 αt,maxnt=1 βt). Then

z− ≤ FFSSPWA(z1, z2, . . . , zn) ≤ z+.
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Proof 3.8. Since minnt=1 αt ≤ αt ≤ maxnt=1 αt minnt=1 βt ≤ βt ≤
maxnt=1 βt, ∀t ∈ 1, 2, . . . , n, then z− ≤ zt for t = 1, 2, . . . , n. Thus, by
using monotonicity property, we have

FFSSPWA(z−1 , z
−
2 , . . . , z

−
n ) ≤ FFSSPWA(z1, z2, . . . , zn)

By using idempotency, we have

z− ≤ FFSSPWA(z1, z2, . . . , zn). (11)

Similarly,

FFSSPWA(z1, z2, . . . , zn) ≤ z+. (12)

Combining Equations (11) and (12), we get

z− ≤ FFSSPWA(z1, z2, . . . , zn) ≤ z+.

4 The Proposed MADM Algorithm Based on the Proposed
FFSSPWA AO of FFNs

In this section, we propose a new MADM algorithm based on FFSSPWA
AO under FFNs environment. Let A1, A2, . . . , Am be m alternatives and
G1, G2, . . . , Gn be n attributes with weights w1, w2, . . ., wn, where
wt ∈ [0, 1] and

∑n
t=1wt = 1. Expert assess the alternative Ak with

respect to attribute Gt by utilizing the FFN zkt = (αkt, βkt), where k =
1, 2, . . . ,m and t = 1, 2, . . . , n, to construct the decision-matrix (DMx)
D̃ = (z̃kt)m×n=(⟨α̃kt, β̃kt⟩)m×n, shown as below:

D̃ =

G1 G2 . . . Gn


A1 z̃11 z̃12 . . . z̃1n
A2 z̃21 z̃22 . . . z̃2n
...

...
...

. . .
...

Am z̃m1 z̃m2 . . . z̃mn

,

The proposed MADM algorithm has the following steps:

Step 1: Convert the DMx D̃ = (z̃kt)m×n = (α̃kt, β̃kt)m×n into normalized
DMx (NDMx) D = (zkt)m×n = (αkt, βkt)m×n as follows:

zkt =

{
(α̃kt, β̃kt) : for benefit-type attribute

(β̃kt, α̃kt) : for cost-type attribute
(13)
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where k = 1, 2, . . . ,m and t = 1, 2, . . . , n.
Step 2: Calculate the support measure S(zkt, zkl) between the FFNs kt and

kl as follows:

S(zkt, zkl) = 1−

√
1
2

[(√
α3
kt −

√
α3
kl

)2
+
(√

β3
kt −

√
β3
kl

)2
+
(√

π3
kt −

√
π3
kl

)2]
, (14)

where t, l = 1, 2, . . . , n and t ̸= l.
Step 3: Calculate the support value T (zkt) corresponding to each FFN zkt as

follows:

T (zkt) =
n∑

l,t=1
l ̸=t

S(zkt, zkl). (15)

Step 4: Based on the support value T (zkt), we obtain the weight ρkt of the
FFN zkt as follows:

ρkt =
wt(1 + T (zkt))∑n
t=1wt(1 + T (zkt))

. (16)

Step 5: By utilizing the proposed FFSSPWA AO, we aggregate the FFNs
zk1,zk2,. . ., zkn to get the overall FFN zk = (αk, βk) of the alternative
Ak, shown as follows:

zk = FFSSPWA(zk1, zk2, . . . , zkn)

=
〈

3

√
1−

(∑n
t=1 ρt

(
1− α3

t )
η −

∑n
t=1 ρt + 1

) 1
η ,

3

√(∑n
t=1 ρtβ

3η
t −

∑n
t=1 ρt + 1

) 1
η

〉
,

(17)

where η < 0.
Step 6: By using Equations (2) and (3), we obtain the score value s(zk) and

accuracy value Ψ(zk), respectively, of the overall FFN zk = (αk, βk)
of alternative Ak, shown as follows:

s(zk) = α3
k − β3

k, (18)

Ψ(zk) = α3
k + β3

k. (19)

Step 7: By using Definition 2.4, score values s(z1), s(z2), . . ., s(zm) and
accuracy values Ψ(z1), Ψ(z2), . . ., Ψ(zm), obtain the ranking order
(RO) of the alternatives A1, A2, . . ., Am, and choose the best
alternative.

Figure 2 represents comprehensive flow chart of the proposed MADM
algorithm.
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Figure 2 Flowchart of the proposed MADM algorithm.
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5 Case Study of the Proposed MADM Algorithm

In this section, we consider a mathematical case study of selection of optimal
healthcare waste management methods. This mathematical case study shows
how much easier it is to apply the proposed MADM algorithm in real life
to select the most appropriate HCWMT, which is a very important process
to maintain public health and environmental security. Effective waste man-
agement has been identified as one of the most important practices in the
healthcare industry over the past few years.

Example 5.1. Activities related to healthcare are essential for preserving and
regaining health as well as saving lives. The trash and byproducts produced
by these operations, however, present a serious problem. Like household
garbage, around 85% of the waste generated by healthcare operations is
ordinary, non-hazardous waste. The remaining 15% is classified as hazardous
material, which might be radioactive, poisonous, infectious, combustible,
corrosive, reactive, or carcinogenic [8]. Although approximately 16 billion
vaccinations are given annually worldwide, not all syringes and needles
are disposed away appropriately after use. It is crucial to take the right
precautions for the safe and ecologically conscious handling of healthcare
waste (HCW). These precautions aid in preventing possible environmental
damage and health dangers, such as the unintentional discharge of biological
or chemical threats. HCW and by-products consist of a diverse range of
materials, such as:

Types of the Health Care Waste

In the following, this paper outlines the various types of health care waste
[11, 26].

Infectious waste is the waste that is believed to contain pathogens and
may spread disease. This refers to waste and wastewater containing blood
and bodily fluids, along with extremely infectious materials like laboratory
cultures, microbiological samples, and waste from items used with patients
with highly contagious diseases in isolation units.

Medical waste: Includes human tissues, organs, body parts, fetuses, unused
blood products, and contaminated animal carcasses.

Waste involving sharps: Includes both used and unused sharp items like
hypodermic needles, IV needles, auto-disable syringes, syringes with nee-
dles, infusion sets, scalpels, pipettes, knives, blades, and shattered glass.
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Figure 3 Graphical representation of the health care waste.

Chemical waste comprises of solvents and reagents utilized in lab experi-
ments, disinfectants, sterilants, as well as heavy metals present in medical
equipment (such as mercury in damaged thermometers) and batteries.

Pharmaceutical and cytotoxic waste includes pharmaceuticals that have
expired or are not used, along with items that have been contaminated by
or contain pharmaceuticals. Cytotoxic waste consists of substances that have
genotoxic properties, like waste containing cytostatic drugs (often used for
cancer treatment) or genotoxic chemicals.

Radioactive waste refers to items that have been tainted with radionuclides,
such as radioactive diagnostic tools or radiotherapeutic drugs.

Non-dangerous or ordinary waste: Includes waste that lacks noteworthy
biological, chemical, radioactive, or physical hazards.

Figure 3 represents the various types of the health care wastes.

Origins of the Health Care Wastes

In the following, some main sources of the generation of the health care waste
are given:

1. Medical centers and other healthcare institutions
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2. Labs and research facilities
3. Funeral homes and morgues
4. Laboratories conducting research and testing on animals
5. Services for collecting and storing blood
6. Care facilities for senior citizens

Health Care Waste Management Technologies

In developed nations, there is approximately 0.5 kg of hazardous waste
produced daily per hospital bed, whereas in developing nations, the average is
0.2 kg per bed. Yet, in developing nations, health care waste is frequently not
categorized into hazardous or non-hazardous wastes, leading to an inflated
amount of hazardous waste. HCW has a detrimental impact on the environ-
ment through pollution, soil and water contamination, as well as the release
of harmful emissions. Hence, it is crucial to have efficient waste management
in order to minimize these negative effects. Proper waste segregation at
the source, compliance with regulations, and comprehensive training for
healthcare workers are vital in achieving this goal. Highlighting the impor-
tance of sustainable practices, such as recycling and reducing single-use
items, is essential as well. Nevertheless, it is crucial to understand that
recycling alone is not a complete answer to the problem. Investing in mod-
ern treatment technologies such as autoclaving and incineration is essential
for efficient management of healthcare waste and reducing related environ-
mental and health hazards. Following an initial assessment, five potential
alternatives of healthcare waste management technologies (HCWMTs) are
determined: “ Mechanical Biological Treatment” (A1), “Hydrothermal Car-
bonization” (A2), “Incineration” (A3), “Microwaving” (A4), and “Chemical
Disinfection” (A5). A brief discussion about these HCWMTs is given below:

Alternatives Description

Mechanical Biological Treatment (MBT) (A1) [25]: MBT is a waste
processing technology combining mechanical sorting with biological
treatment processes to reduce the volume of waste and recover useful
materials, while minimizing the environmental impact of waste disposal.
MBT in the management of municipalities and health care wastes will
be effectively managed by diverting waste away from landfills as well
as by recovering valuable resources such as energy, compost, or other
recyclable material.
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Hydrothermal Carbonization (HTC) (A2) [22]: HTC is a promising
technology that can be used to address many of the challenges associ-
ated with the management of HWM in healthcare facilities. Healthcare
facilities produce a great deal of waste – while much of it is organic,
such as food waste, paper, and some medical materials, it also includes
hazardous materials, such as sharps, pharmaceutical wastes, and bio-
hazardous materials. The HTC can be very useful for the treatment
of specific types of healthcare waste, especially organic waste, and
sewage sludge, where it reduces environmental impacts while promoting
sustainability.
Incineration (A3) [22]: Incineration is the process of burning the
biomedical waste to convert it into gases and ash that are hard to burn
again. The non-burnt ash left after the treatment is disposed of in a
landfill. This combustion process can effectively break down waste
materials, including elements like carbon, hydrogen, oxygen, sulfur,
chlorine, and others, depending on the waste composition and the
efficiency of the incinerator system. The process yields flue gases; these
are generally harmless carbon dioxide, water, and nitrogen. However,
it also emits poisonous emissions in the form of acidic gases such
as sulfur oxides, acids, and nitrogen; toxic materials include heavy
metals, dioxins, and furans. Incinerators incorporate air pollution control
devices (APCDs) to ensure the best possible removal of contaminants
from flue gases in order to minimize the impact of these pollutants
on the environment. Waste volume is reduced by about 80-85% via
incineration.
Microwaving (A4) [27]: Microwave energy is deployed to treat medical
wastes and wastewater sludge. To achieve a better microwave treatment,
as well as to bring down the quantity of solid waste for disposal, the
wastes are normally shredded and pre-moistened. A microwave unit
directly heats the wet waste by deploying microwaves, unlike an auto-
clave that can be used to heat waste externally, just like a conventional
oven. However, microwave treatment is not appropriate for contami-
nated animal carcasses, large metal objects, or hazardous waste such as
cytotoxic, toxic, or radioactive materials. The advantage of microwaving
lies in the fact that there is no requirement for steam and electricity usage
is very low.
Chemical Disinfection (A5) [16]: Chemical disinfection mainly applies
to liquid waste including blood, urine, feces, or sewage from healthcare
facilities. It can further be used to disinfect microbiological cultures,
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contaminated sharps, or shredded. Normally, chemical disinfectants
such as sodium hypochlorite, calcium hypochlorite, and chlorine dioxide
are mixed with the waste and left to act for a predetermined period.
This method functions by breaking down organic matter and inacti-
vating infectious microorganisms. Chemical disinfection is generally
considered adequate when the volume of waste is relatively small.

Attributes Descriptions

HCWMTs for HCW management are evaluated using seven attributes
“Environmental hazard” (G1), “Health risk” (G2), “Investment cost” (G3),
“Operation and maintenance cost” (G4), “Revenue generation” (G5), “Public
acceptance” (G6) and “Requirement of skilled labor” (G7). These attributes
are identified through literature review and discussion with experts. A brief
summary of these attributes is given as follows:

(i) “Environmental hazard” (G1) [16]: Environmental hazards serve as
essential criteria for evaluating potential risks, including air pollutants,
emissions of greenhouse gases, and toxic residues from burning or
chemical processes. This assessment ensures the selection of HCWTTs
that minimize harm to ecosystems and human health while optimizing
energy efficiency.

(ii) “Health risk” (G2) [25]: Potentially dangerous microbes found in
HCW have the potential to infect HCW management personnel,
and members of the public. Drug-resistant bacteria that escape from
medical institutions and into the environment could be additional risks.

(iii) “Investment cost” (G3) [11]: The cost of investment directly affects
project feasibility, shaping budget allocation, financing alternatives,
and return on investment assessments. This approach enables stake
holders to prioritize cost-effective HCWTTs that enhance long-term
financial benefits and promote sustainable waste management prac-
tices.

(iv) “Operation and maintenance cost” (G4) [12]: Because they affect
ongoing financial obligations, operational efficiency, and profitability
during the facility’s lifetime, operation and maintenance expenses are
important economic factors.

(v) “Revenue generation” (G5) [25]: HCW management may become a
money-generating endeavor since revenue production balances initial
investment and operating expenses. By utilizing resource recovery
and energy production to improve economic viability and promote
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long-term financial sustainability in HCW management systems, it
encourages sustainable behaviors.

(vi) “Public acceptance” (G6) [26]: Considers the general public’s
approval and support of HCWT methods.

(vii) “Requirement of skilled labor” (G7): [12] The need for skilled labor
affects community empowerment, local economic growth, and job
creation by providing chances for specialized training and employ-
ment. It fosters community-based sustainable livelihoods and improves
workforce skills.

Furthermore, the HCWMTs A1, A2, A3, A4 and A5 are evaluated
under the seven attributes “Environmental hazard” (G1), “Health risk” (G2),
“Investment cost” (G3), “Operation and maintenance cost” (G4), “Revenue
generation” (G5), “Public acceptance” (G6) and “Requirement of skilled
labor” (G7) by the decision making expert (DMEx), where the weights of the
attributes are w1 = 0.25, w2 = 0.1, w3 = 0.1, w4 = 0.2, w5 = 0.1, w6 = 0.1
and w7 = 0.15, respectively. The DMEx uses a FFN zkt = (αkt, βkt)
to assess the alternative Ak under the attribute Gt, to assemble the DMx
D̃ = (z̃kt)m×n=(⟨α̃kt, β̃kt⟩)m×n, shown as follows:

D̃ =

G1 G2 G3 G4 G5 G6 G7


A1 ⟨0.2, 0.2⟩ ⟨0.3, 0.3⟩ ⟨0.1, 0.6⟩ ⟨0.5, 0.4⟩ ⟨0.5, 0.5⟩ ⟨0.5, 0.6⟩ ⟨0.2, 0.7⟩
A2 ⟨0.1, 0.4⟩ ⟨0.3, 0.5⟩ ⟨0.2, 0.6⟩ ⟨0.4, 0.3⟩ ⟨0.3, 0.5⟩ ⟨0.1, 0.1⟩ ⟨0.4, 0.7⟩
A3 ⟨0.5, 0.3⟩ ⟨0.4, 0.5⟩ ⟨0.2, 0.7⟩ ⟨0.4, 0.6⟩ ⟨0.4, 0.6⟩ ⟨0.3, 0.3⟩ ⟨0.9, 0.2⟩
A4 ⟨0.8, 0.1⟩ ⟨0.7, 0.3⟩ ⟨0.4, 0.5⟩ ⟨0.3, 0.4⟩ ⟨0.2, 0.8⟩ ⟨0.6, 0.1⟩ ⟨0.3, 0.1⟩
A5 ⟨0.1, 0.8⟩ ⟨0.1, 0.9⟩ ⟨0.2, 0.3⟩ ⟨0.5, 0.4⟩ ⟨0.1, 0.4⟩ ⟨0.3, 0.3⟩ ⟨0.6, 0.2⟩

.

To solve this case study, we utilize the proposed MADM algorithm, which
is illustrated below:

Step 1: Since the attributes G1, G2, G3 and G4 are cost kind, and G5, G6

and G7 are benefit kind, therefore by using Equation (13), we obtain
NDMx D = (z̃kt)5×7 = (zkt)5×7, where

D =

G1 G2 G3 G4 G5 G6 G7


A1 ⟨0.2, 0.2⟩ ⟨0.3, 0.3⟩ ⟨0.6, 0.1⟩ ⟨0.4, 0.5⟩ ⟨0.5, 0.5⟩ ⟨0.5, 0.6⟩ ⟨0.2, 0.7⟩
A2 ⟨0.4, 0.1⟩ ⟨0.5, 0.3⟩ ⟨0.6, 0.2⟩ ⟨0.3, 0.4⟩ ⟨0.3, 0.5⟩ ⟨0.1, 0.1⟩ ⟨0.4, 0.7⟩
A3 ⟨0.3, 0.5⟩ ⟨0.5, 0.4⟩ ⟨0.7, 0.2⟩ ⟨0.6, 0.4⟩ ⟨0.4, 0.6⟩ ⟨0.3, 0.3⟩ ⟨0.9, 0.2⟩
A4 ⟨0.1, 0.8⟩ ⟨0.3, 0.7⟩ ⟨0.5, 0.4⟩ ⟨0.4, 0.3⟩ ⟨0.2, 0.8⟩ ⟨0.6, 0.1⟩ ⟨0.3, 0.1⟩
A5 ⟨0.8, 0.1⟩ ⟨0.9, 0.1⟩ ⟨0.3, 0.2⟩ ⟨0.4, 0.5⟩ ⟨0.1, 0.4⟩ ⟨0.3, 0.3⟩ ⟨0.6, 0.2⟩

.

Step 2: By using Equation (14), we calculate the support measures S(zkt, zkl)
between the FFNs zkt and zkl as follows: S(z11, z12) = 0.9239,
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S(z11, z13) = 0.7210,
S(z11, z14) = 0.7710, S(z11, z15) = 0.7213, S(z11, z16) = 0.6514,
S(z11, z17) = 0.6252,
S(z12, z11) = 0.9239, S(z12, z13) = 0.7596, S(z12, z14) =
0.8437, S(z12, z15) = 0.7963,
S(z12, z16) = 0.7244, S(z12, z17) = 0.6752, S(z13, z11) =
0.7210, S(z13, z12) = 0.7596,
S(z13, z14) = 0.7273, S(z13, z15) = 0.7588, S(z13, z16) =
0.6796, S(z13, z17) = 0.5235,
S(z14, z11) = 0.7710, S(z14, z12) = 0.8437, S(z14, z13) =
0.7273, S(z14, z15) = 0.9248,
S(z14, z16) = 0.8768, S(z14, z17) = 0.7883, S(z15, z11) =
0.7213, S(z15, z12) = 0.7963,
S(z15, z13) = 0.7588, S(z15, z14) = 0.9248, S(z15, z16) =
0.9125, S(z15, z17) = 0.7477,
S(z16, z11) = 0.6514, S(z16, z12) = 0.7244, S(z16, z13) =
0.6796, S(z16, z14) = 0.8768,
S(z16, z15) = 0.9125, S(z16, z17) = 0.7946, S(z17, z11) =
0.6252, S(z17, z12) = 0.6752,
S(z17, z13) = 0.5235, S(z17, z14) = 0.7883, S(z17, z15) =
0.7477, S(z17, z16) = 0.7986,
S(z21, z22) = 0.8778, S(z21, z23) = 0.8333, S(z21, z24) =
0.8311, S(z21, z25) = 0.7616,
S(z21, z26) = 0.8418, S(z21, z27) = 0.5842, S(z22, z21) =
0.8778, S(z22, z23) = 0.9011,
S(z22, z24) = 0.8504, S(z22, z25) = 0.8108, S(z22, z26) =
0.7477, S(z22, z27) = 0.6757,
S(z23, z21) = 0.8333, S(z23, z22) = 0.9011, S(z23, z24) =
0.7527, S(z23, z25) = 0.7157,
S(z23, z26) = 0.6799, S(z23, z27) = 0.6105, S(z24, z21) =
0.8311, S(z24, z22) = 0.8504,
S(z24, z23) = 0.7527, S(z24, z25) = 0.9253, S(z24, z26) =
0.8147, S(z24, z27) = 0.7242,
S(z25, z21) = 0.7616, S(z25, z22) = 0.8108, S(z25, z23) =
0.7157, S(z25, z24) = 0.9253,
S(z25, z26) = 0.7477, S(z25, z27) = 0.7945, S(z26, z21) =
0.8418, S(z26, z22) = 0.7477,
S(z26, z23) = 0.6799, S(z26, z24) = 0.8147, S(z26, z25) =
0.7477, S(z26, z27) = 0.5481,
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S(z27, z21) = 0.5842, S(z27, z22) = 0.6757, S(z27, z23) =
0.6105, S(z27, z24) = 0.7242,
S(z27, z25) = 0.7945, S(z27, z26) = 0.5481, S(z31, z32) =
0.8478, S(z31, z33) = 0.6390,
S(z31, z34) = 0.7702, S(z31, z35) = 0.8872, S(z31, z36) =
0.8613, S(z31, z37) = 0.4035,
S(z32, z31) = 0.8478, S(z32, z33) = 0.7883, S(z32, z34) =
0.9132, S(z32, z35) = 0.8302,
S(z32, z36) = 0.8437, S(z32, z37) = 0.5378, S(z33, z31) =
0.6390, S(z33, z32) = 0.7883,
S(z33, z34) = 0.8530, S(z33, z35) = 0.6441, S(z33, z36) =
0.6752, S(z33, z37) = 0.7193,
S(z34, z31) = 0.7702, S(z34, z32) = 0.9132, S(z34, z33) =
0.8130, S(z34, z35) = 0.7882,
S(z34, z36) = 0.7617, S(z34, z37) = 0.6187, S(z35, z31) =
0.8872, S(z35, z32) = 0.8302,
S(z35, z33) = 0.6441, S(z35, z34) = 0.7882, S(z35, z36) =
0.7617, S(z35, z37) = 0.4457,
S(z36, z31) = 0.8613, S(z36, z32) = 0.8437, S(z36, z33) =
0.6752, S(z36, z34) = 0.7617,
S(z36, z35) = 0.7617, S(z36, z37) = 0.4116, S(z37, z31) =
0.4035, S(z37, z32) = 0.5378,
S(z37, z33) = 0.7193, S(z37, z34) = 0.6187, S(z37, z35) =
0.4457, S(z37, z36) = 0.4116,
S(z41, z42) = 0.8522, S(z41, z43) = 0.5765, S(z41, z44) =
0.5427, S(z41, z45) = 0.9590,
S(z41, z46) = 0.4125, S(z41, z47) = 0.4669, S(z42, z41) =
0.8522, S(z42, z43) = 0.7190,
S(z42, z44) = 0.6753, S(z42, z45) = 0.8722, S(z42, z46) =
0.5497, S(z42, z47) = 0.5853,
S(z43, z41) = 0.5765, S(z43, z42) = 0.7190, S(z43, z44) =
0.8981, S(z43, z45) = 0.5957,
S(z43, z46) = 0.8245, S(z43, z47) = 0.7854, S(z44, z41) =
0.5427, S(z44, z42) = 0.6753,
S(z44, z43) = 0.8981, S(z44, z45) = 0.5536, S(z44, z46) =
0.8168, S(z44, z47) = 0.8848,
S(z45, z41) = 0.9590, S(z45, z42) = 0.8722, S(z45, z43) =
0.5957, S(z45, z44) = 0.5536,
S(z45, z46) = 0.4319, S(z45, z47) = 0.4712, S(z46, z41) =
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0.4125, S(z46, z42) = 0.5497,
S(z46, z43) = 0.8245, S(z46, z44) = 0.8168, S(z46, z45) =
0.4319, S(z46, z47) = 0.7759,
S(z47, z41) = 0.4669, S(z47, z42) = 0.5853, S(z47, z43) =
0.7854, S(z47, z44) = 0.8848,
S(z47, z45) = 0.4712, S(z47, z46) = 0.7759, S(z51, z52) =
0.8405, S(z51, z53) = 0.5595,
S(z51, z54) = 0.5765, S(z51, z55) = 0.4572, S(z51, z56) =
0.5545, S(z51, z57) = 0.7767,
S(z52, z51) = 0.8405, S(z52, z53) = 0.4114, S(z52, z54) =
0.4478, S(z52, z55) = 0.3199,
S(z52, z56) = 0.4091, S(z52, z57) = 0.6223, S(z53, z51) =
0.5595, S(z53, z52) = 0.4114,
S(z53, z54) = 0.7947, S(z53, z55) = 0.8507, S(z53, z56) =
0.9466, S(z53, z57) = 0.7758,
S(z54, z51) = 0.5765, S(z54, z52) = 0.4478, S(z54, z53) =
0.7947, S(z54, z55) = 0.8218,
S(z54, z56) = 0.8437, S(z54, z57) = 0.7602, S(z55, z51) =
0.4572, S(z55, z52) = 0.3199,
S(z55, z53) = 0.8507, S(z55, z54) = 0.8218, S(z55, z56) =
0.8871, S(z55, z57) = 0.6670,
S(z56, z51) = 0.5545, S(z56, z52) = 0.4091, S(z56, z53) =
0.9466, S(z56, z54) = 0.8437,
S(z56, z55) = 0.8871, S(z56, z57) = 0.7717, S(z57, z51) =
0.7767, S(z57, z52) = 0.6223,
S(z57, z53) = 0.7758, S(z57, z54) = 0.7602, S(z57, z55) =
0.6670, S(z57, z56) = 0.7717.

Step 3: By using Equation (15), we obtain the support value of T (zkt) of the
FFNs zkt as follows:

T (z11) = 4.4138, T (z12) = 4.7230, T (z13) = 4.1698, T (z14) = 4.9319,

T (z15) = 4.8614, T (z16) = 4.6392, T (z17) = 4.1544, T (z21) = 4.7299,

T (z22) = 4.8635, T (z23) = 4.4933, T (z24) = 4.8984, T (z25) = 4.7555,

T (z26) = 4.3799, T (z27) = 3.9372, T (z31) = 4.4090, T (z32) = 4.7609,

T (z33) = 4.3189, T (z34) = 4.7051, T (z35) = 4.3571, T (z36) = 4.3152,

T (z37) = 3.1365, T (z41) = 3.8099, T (z42) = 4.2538, T (z43) = 4.3992,

T (z44) = 4.3713, T (z45) = 3.8836, T (z46) = 3.8112, T (z47) = 3.9696,

T (z51) = 3.7649, T (z52) = 3.0511, T (z53) = 4.3386, T (z54) = 4.2447,
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T (z55) = 4.0037, T (z56) = 4.4127, T (z57) = 4.3737.

Step 4: By using Equation (16), we calculate the weight ρkt of the FFN zkt,
where

ρ11 = 0.2438, ρ12 = 0.1031, ρ13 = 0.0931, ρ14 = 0.2137,

ρ15 = 0.1056, ρ16 = 0.1016, ρ17 = 0.1393, ρ21 = 0.2557,

ρ22 = 0.1047, ρ23 = 0.0981, ρ24 = 0.2106, ρ25 = 0.1027,

ρ26 = 0.0960, ρ27 = 0.1322, ρ31 = 0.2557, ρ32 = 0.1089,

ρ33 = 0.1006, ρ34 = 0.2157, ρ35 = 0.1013, ρ36 = 0.1005,

ρ37 = 0.1173, ρ41 = 0.2378, ρ42 = 0.1039, ρ43 = 0.1068,

ρ44 = 0.2124, ρ45 = 0.0966, ρ46 = 0.0951, ρ47 = 0.1474,

ρ51 = 0.2370, ρ52 = 0.0806, ρ53 = 0.1062, ρ54 = 0.2087,

ρ55 = 0.0995, ρ56 = 0.1077, ρ57 = 0.1604.

Step 5: By utilizing proposed FFSSPWA AO given in Equation (17), we
obtain the overall FFN zk of the alternatives Ak, where η = −2, z1 =
⟨0.4182, 0.1475⟩, z2 = ⟨0.4198, 0.1189⟩, z3 = ⟨0.7393, 0.2550⟩,
z4 = ⟨0.3975, 0.1266⟩, and z5 = ⟨0.7456, 0.1208⟩.

Step 6: By using Equation (18), we obtain the score values s(z1) = 0.0699,
s(z2) = 0.0723, s(z3) = 0.3875, s(z4) = 0.0608, s(z5) = 0.4127 of
the alternatives A1, A2, A3, A4 and A5, respectively.

Step 7: Because s(z5) > s(z3) > s(z2) > s(z1) > s(z4) where s(z1) =
0.0699, s(z2) = 0.0723, s(z3) = 0.3875, s(z4) = 0.0608 and
s(z5) = 0.4127, the RO of the alternatives A1, A2, A3, A4 and A5

is A5 ≻ A3 ≻ A2 ≻ A1 ≻ A4. Therefore, “Chemical Disinfec-
tion” (A5) is the best HCWMT among the “ Mechanical Biological
Treatment” (A1), “Hydrothermal Carbonization” (A2), “Incinera-
tion” (A3), “Microwaving” (A4), and “Chemical Disinfection” (A5)
for this mathematical case study.

5.1 Comparative Analysis with Existing MADM Algorithms

In the following, we compare the ROs of the HCWMTs “ Mechanical
Biological Treatment” (A1), “Hydrothermal Carbonization” (A2), “Inciner-
ation” (A3), “Microwaving” (A4), and “Chemical Disinfection” (A5) for the
Example 5.1 obtained by the proposed MADM algorithm with the Senap-
ati and Yager’s [29] MADM algorithms based on FFWA AO and FFPWA
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Table 1 A comparative analysis of ROs of the alternatives obtained by various MADM
algorithms for Example 5.1

MADM Algorithms ROs

M1 MADM algorithm based on FFWA AO [29] A5 ≻ A3 ≻ A2 ≻ A1 ≻ A4

M2 MADM algorithm based on FFPWA AO [29] A5 ≻ A3 ≻ A2 ≻ A1 ≻ A4

M3 MADM algorithm based on FFOWA AO [2] A5 ≻ A3 ≻ A2 ≻ A1 ≻ A4

M4 MADM algorithm based on FFYWA AO [14] A5 ≻ A3 ≻ A2 ≻ A1 ≻ A4

M Proposed MADM algorithm A5 ≻ A3 ≻ A2 ≻ A1 ≻ A4

AO, Alghazzawi et al.’s [2] MADM algorithm based on FFOWA AO, Garg
et al.’s [14] MADM algorithm based on FFYWA AO to show the practical
applicability and validity of the proposed MADM algorithm.

Table 1 and Figure 4 present a comparison of the ROs of HCWMTs
“ Mechanical Biological Treatment” (A1), “Hydrothermal Carbonization”
(A2), “Incineration” (A3), “Microwaving” (A4), and “Chemical Disin-
fection” (A5) obtained by the proposed MADM algorithm, Senapati and
Yager’s [29] MADM algorithms based on FFWA AO and FFPWA AO,
Alghazzawi et al.’s [2] MADM algorithm based on FFOWA AO, Garg et
al.’s [14] MADM algorithm based on FFYWA AO for the Example 5.1.

It is clear from Table 1 and Figure 4 that the proposed MADM algorithm,
Senapati and Yager’s [29] MADM algorithms based on FFWA AO and
FFPWA AO, Alghazzawi et al.’s [2] MADM algorithm based on FFOWA AO,

Figure 4 Graphical comparison of ROs obtained by various MADM algorithms for Exam-
ple 5.1.
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Garg et al.’s [14] MADM algorithm based on FFYWA AO obtain the same
RO “A5 ≻ A3 ≻ A2 ≻ A1 ≻ A4” of the HCWMTs “ Mechanical Biolog-
ical Treatment” (A1), “Hydrothermal Carbonization” (A2), “Incineration”
(A3), “Microwaving” (A4), and “Chemical Disinfection” (A5). Therefore,
“Chemical Disinfection” (A5) is the best HCWMT among the “ Mechanical
Biological Treatment” (A1), “Hydrothermal Carbonization” (A2), “Inciner-
ation” (A3), “Microwaving” (A4), and “Chemical Disinfection” (A5) for the
sustainable HCW management in the case study given in Example 5.1. This
validates the reliability and robustness of the proposed MADM algorithm.

6 Advantages of the Proposed MADM Algorithm Over the
Existing MADM Algorithms

In the following, we consider two numerical MADM examples to highlights
the superiority and efficacy of the proposed MADM algorithm as com-
pared to existing MADM algorithms presented by Senapati and Yager [29],
Alghazzawi et al. [2], and Garg et al. [14].

Example 6.1. Let A1, A2, A3 and A4 be four alternatives, and G1, G2, G3

and G4 be four benefit type attributes with the weights w1 = 0.4, w2 = 0.3,
w3 = 0.2 and w4 = 0.1. DMEx evaluates the alternatives A1, A2, A3 and A4

with respect to attributes G1, G2, G3 and G4 by using FFNs zkt to obtain the
DMx D̃ = (z̃kt)4×4 = (α̃kt, β̃kt)4×4 as shown follows:

D̃ =

G1 G2 G3 G4


A1 ⟨0.2, 0.2⟩ ⟨0.4, 0.6⟩ ⟨0.3, 0.7⟩ ⟨0.1, 0.9⟩
A2 ⟨0.7, 0.3⟩ ⟨0.5, 0.5⟩ ⟨0.6, 0.4⟩ ⟨0.8, 0.2⟩
A3 ⟨0.9, 0.1⟩ ⟨0.4, 0.6⟩ ⟨0.6, 0.4⟩ ⟨0.7, 0.3⟩
A4 ⟨0.6, 0.4⟩ ⟨0.8, 0.2⟩ ⟨0.7, 0.3⟩ ⟨0.5, 0.5⟩

To solve this MADM problem, we use the proposed MADM algorithm,
Senapati and Yager’s [29] MADM algorithms based on FFWA AO and
FFPWA AO, Alghazzawi et al.’s [2] MADM algorithm based on FFOWA
AO, Garg et al.’s [14] MADM algorithm based on FFYWA AO, and obtained
ROs are summarized in Table 2 and Figure 5.

It is clear from Table 2 and Figure 5 that the Senapati and Yager’s [29]
MADM algorithm based on FFWA AO obtains the RO “A3 = A4 ≻ A2 ≻
A1”, where it cannot distinguish the RO between the alternatives A3 and
A4. Similarly, Alghazzawi et al.’s [2] MADM algorithm based on FFOWA
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Table 2 A comparative analysis of ROs of the alternatives obtained by various MADM
algorithms for Example 6.1

MADM Algorithms ROs

M1 MADM algorithm based on FFWA AO [29] A3 = A4 ≻ A2 ≻ A1

M2 MADM algorithm based on FFPWA AO [29] A3 ≻ A4 ≻ A2 ≻ A1

M3 MADM algorithm based on FFOWA AO [2] A3 ≻ A4 = A2 ≻ A1

M4 MADM algorithm based on FFYWA AO [14] A3 ≻ A4 ≻ A2 ≻ A1

M Proposed MADM algorithm A3 ≻ A4 ≻ A2 ≻ A1

Figure 5 Graphical comparison of ROs derived by various MADM algorithms for Exam-
ple 6.1.

AO obtains the RO “A3 ≻ A4 = A2 ≻ A1”, where it cannot distinguish
the RO between the alternatives A2 and A4. While, the proposed MADM
algorithm, Garg et al.’s [14] MADM algorithm based on FFYWA AO and
Senapati and Yager’s [29] MADM algorithm based on FFPWA AO obtain
the same RO “A3 ≻ A4 ≻ A2 ≻ A1” for the alternatives A1,A2, A3 and
A4. Therefore, the proposed MADM approach can overcome the limitations
of Senapati and Yager’s [29] MADM algorithm based on FFWA AO and
Alghazzawi et al.’s [2] MADM algorithm based on FFOWA AO in this case.

Example 6.2. Let A1, A2, A3 and A4 be four alternatives, and G1, G2, G3

and G4 be four benefit type attributes with the weights w1 = 0.3, w2 = 0.2,
w3 = 0.4 and w4 = 0.1. DMEx evaluates the alternatives A1, A2, A3 and A4

with respect to attributes G1, G2, G3 and G4 by using FFNs zkt to obtain the
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DMx D̃ = (z̃kt)4×4 = (α̃kt, β̃kt)4×4 as shown follows:

D̃ =

G1 G2 G3 G4


A1 ⟨0.6, 0.7⟩ ⟨0.763, 0.409⟩ ⟨0.36, 0.6⟩ ⟨0.62, 0.709⟩
A2 ⟨0.8, 0.4⟩ ⟨0.3, 0.6⟩ ⟨0.6, 0.3⟩ ⟨0.7, 0.8⟩
A3 ⟨0.706, 0.52⟩ ⟨0.5, 0.72⟩ ⟨0.5, 0.497⟩ ⟨0.8, 0.7⟩
A4 ⟨0.6, 0.697⟩ ⟨0.381, 0.08⟩ ⟨0.695, 0.491⟩ ⟨0.6, 0.8⟩

To solve this MADM problem, we use the proposed MADM algorithm,
Senapati and Yager’s [29] MADM algorithms based on FFWA AO and
FFPWA AO, Alghazzawi et al.’s [2] MADM algorithm based on FFOWA
AO, Garg et al.’s [14] MADM algorithm based on FFYWA AO, and obtained
ROs are summarized in Table 3 and Figure 6.

Table 3 A comparative analysis of ROs of the alternatives obtained by various MADM
algorithms for Example 6.2

MADM Algorithms ROs

M1 MADM algorithm based on FFWA AO [29] A2 ≻ A4 ≻ A3 ≻ A1

M2 MADM algorithm based on FFPWA AO [29] A2 ≻ A4 = A3 ≻ A1

M3 MADM algorithm based on FFOWA AO [2] A2 ≻ A4 ≻ A3 ≻ A1

M4 MADM algorithm based on FFYWA AO [14] A2 ≻ A4 = A3 ≻ A1

M Proposed MADM algorithm A2 ≻ A4 ≻ A3 ≻ A1

Figure 6 Graphical comparison of ROs derived by various MADM algorithms for Exam-
ple 6.2.
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It is clear from Table 3 and Figure 6 that the Senapati and Yager [29]’s
MADM algorithm based on FFPWA AO and Garg et al.’s [14] MADM
algorithm based on FFYWA AO obtain the same RO “A2 ≻ A4 = A3 ≻ A1”
of the alternatives A1, A2, A3 and A4, where these MADM algorithms
cannot distinguish the RO between the alternatives A3 and A4. While, the
proposed MADM approach, Alghazzawi et al.’s [2] MADM algorithm based
on FFOWA AO and Senapati and Yager’s [29] MADM algorithm based on
FFWA AO obtain the same RO “A2 ≻ A4 ≻ A3 ≻ A1” for the alternatives
A1, A2, A3 and A4. Therefore, the proposed MADM algorithm can overcome
the limitations of Senapati and Yager’s [29] MADM algorithm based on
FFPWA AO and Garg et al.’s [14] MADM algorithm based on FFYWA AO
in this case.

7 Conclusion

The health care waste (HCW) generated from the hospitals and other health
care facilities create a high risks to health care personnel, patients, the public,
and the environment. Therefore, a suitable sustainable management of the
HCW is necessary to reduce the human and environmental risk. For this,
the selection of the optimal HCW management technique (HCWMT) is an
important task. Therefore, we have proposed a MADM algorithm in the
context of FFNs to find the best sustainable HCWMT. For this, we have
proposed FFSSPA AO and FFSSPWA AO for aggregating the FFNs based
on the power averaging AO and Schweizer-Sklar’s norm. Moreover, we
have proposed a MADM algorithm based on the proposed FFSSPWA AO
for FFNs. Afterwards, we have illustrated the proposed MADM algorithm
by conducting a mathematical case study for the assessment of sustainable
HCWMTs that considered the five HCWMTs: “Mechanical Biological Treat-
ment”, “Hydrothermal Carbonization”, “Incineration”, “Microwaving”, and
“Chemical Disinfection” to show the applicability of the proposed MADM
algorithm. To show the robustness and validity of the results, we have
compared the RO of the alternatives obtained using the proposed MADM
algorithm with the ROs obtained from the existing MADM algorithms.
From Example 6.1 and Example 6.2, it is clear that the proposed MADM
algorithm can overcome the disadvantages of the MADM algorithm based
on FFWA AO [29], MADM algorithm based on FFPWA AO [29], MADM
algorithm based on FFOWA AO [2] and MADM algorithm based on FFYWA
AO [14], which are unable to distinguish the ROs of the alternatives. The
proposed FFSSPA AO, FFSSPWA AO, and proposed MADM algorithm
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fail to account for the priority order among various attributes, despite its
objective existence in numerous real-world scenarios. Various generalizations
and extensions of the FFNs also exist in the literature. Apart from that, the
proposed MADM approach cannot solve the group decision making problems
whereas group decision-making is frequently involved in real-life scenarios,
the study solely considers a single decision-maker. Therefore, in the future,
the proposed FFSSPA AO, FFSSPWA AO, and proposed MADM algorithm
will be extended to other environments such as p, q-quasirung orthopair
fuzzy sets [27], neutrosophic sets [13], bipolar complex fuzzy sets [21],
probabilistic linguistic sets [15], etc., by integrating some innovative features
such as prioritized, partitioned, and induced information. We can also expand
this in the future to include a group decision-making process based on the
proposed FFSSPWA AO in the FFNs environment.
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